Superior Eccentric Domination in some Quadrilateral Snake Graphs

M. Bhanumathi,
Principal,
Government Arts College for Women, Sivagangai-630562,Tamil Nadu, India. bhanu ksp@yahoo.com
R.Meenal Abirami,
Research Scholar, Government Arts College for Women(Autonomous), Pudukkottai-622001, Tamil Nadu, India.
meegeeabirami@gmail.com

Abstract

In 2017 we define superior eccentric domination in graphs. A superior dominating set S of vertices of G is called a superior eccentric dominating set if every vertex of $V(G)-S$ has some superior eccentric vertex in S. A superior eccentric dominating set of G of minimum cardinality is a minimum superior eccentric dominating set and its cardinality is called the superior eccentric domination number and is denoted by $\gamma_{\mathrm{sed}}(\mathrm{G})$. In this paper we initiate the study of superior eccentric dominating sets in quadrilateral snake graphs, alternate quadrilateral snake graphs, double quadrilateral snake graphs and double alternate quadrilateral snake graphs.

Keywords:

Superior eccentric vertex, superior dominating set, superior eccentric dominating set, Superior eccentric dominating set of some quadrilateral snake graphs.
Mathematics subject classification(2010) : 05C12, 05C69.

1 INTRODUCTION

Let G be a finite, simple, undirected (a, b) graph with vertex set $V(G)$ and edge set $E(G),|V(G)|$ $=u,|E(G)|=v$. For graph theoretic terminology refer Harary [3], Buckley and Harary [1].
In 2010, Janakiraman, Bhanumathi and Muthammai defined eccentric domination in graphs [5]. K. M Kathiresan and G.Marimuthu introduced the superior domination in graphs and superior distance in graphs [5,6].
A set $\mathrm{D} \subseteq \mathrm{V}$ is said to be a dominating set in G , if every vertex in V - D is adjacent to some vertex in D . The minimum cardinality of a dominating set is called the domination number and is denoted by $\gamma(\mathrm{G})$. For two vertices u and v in a graph G, the distance from u to v is denoted by $\mathrm{d}(\mathrm{u}, \mathrm{v})$ and defined as the length of a shortest $\mathrm{u}-\mathrm{v}$ path in graph G . Let G be a connected graph and v be a vertex of G. The eccentricity $e(v)$ of v is the distance to a vertex farthest from v. Thus, $e(v)=\max \{d(u, v): u \in V\}$. A set $D \subseteq V(G)$ is an eccentric dominating set if D is a dominating set of G and for every $v \in V-D$, there exist at least one eccentric vertex of v in D. The minimum cardinality of an eccentric dominating set is called the eccentric domination number and is denoted by $\gamma_{\mathrm{ed}}(\mathrm{G})$.

2. Superior Eccentric Dominating Set.

For distinct vertices u and v of a non-trivial connected graph G, let $D_{u, v}=N(u) \cup N(v)$. We define a $D_{u, v}$ - walk as a $u-v$ walk in G that contains every vertex of $D_{u, v}$. The superior distance $d_{D}(u, v)$ from u to v is the length of a shortest $D_{u, v}$ walk. For each vertex $u \in V(G)$, define $d_{D}(u)$ $=\min \left\{d_{D}(u, v): v \in V(G)-\{u\}\right\}$. A vertex $v(\neq u)$ is called a superior neighbor of u if $d_{D}(u, v)=$ $d_{D}(u)$. A vertex u is said to superior dominate a vertex v if v is a superior neighbor of u. A set S of vertices of G is called a superior dominating set if every vertex of $V(G)-S$ is superior
dominated by some vertex in S. A superior dominating set of G of minimum cardinality is a minimum superior dominating set and its cardinality is called the superior domination number of G and is denoted by $\gamma_{s d}(G)$. we define the superior eccentricity of v as $e_{D}(v)=\max \left\{d_{D}(u, v): u \in\right.$ $V(G)\}$. A vertex v of a graph G is said to be a superior eccentric vertex of a vertex u if $d_{D}(u, v)=$ $e_{D}(u)$. A vertex u is superior eccentric vertex of G if it is a superior eccentric vertex of some vertex v.

2. Superior Eccentric Domination in Some Graphs:

Definition 2.1

A superior dominating set S of vertices of G is called a superior eccentric dominating set if every vertex of $V(G)$ - S has some superior eccentric vertex in S.

Quadrilateral Snake Graph:

The Quadrilateral Snake Graph Q_{n} is obtained from the path P_{n} by replacing each edge of the path by a cycle C_{4}. The minimum cardinality of a superior eccentric domination in quadrilateral snake graph is $\gamma_{\text {sed }}\left(Q_{n}\right)$.

Superior distance $d_{D}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=7$,
Superior distance $d_{D}\left(v_{1}, u_{1}\right)=3$,
Superior distance $d_{D}\left(v_{1}, v_{n}\right)=3+d\left(v_{2}, v_{n-1}\right)+3=6+n-3=n+3$,
Superior distance $d_{D}\left(v_{i}, v_{n}\right)=4+d\left(v_{i}, v_{n-1}\right)+3=7+n-i-1=n-i+6($ for $\mathrm{i} \geq 2)$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=4+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)+3=4+(\mathrm{j}-1-\mathrm{i})+3=7+(\mathrm{j}-1-\mathrm{i})=6+\mathrm{j}-\mathrm{i}($ for $\mathrm{i} \geq 2, \mathrm{j} \leq \mathrm{n}-1$),
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=3$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=7$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{u}_{3}{ }^{\prime}\right)=8$,
Superior distance $d_{D}\left(u_{1}, u_{4}\right)=9$,
Superior distance $d_{D}\left(u_{1}, u_{3}\right)=8$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{v}_{\mathrm{n}}\right)=4+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+3=7+\mathrm{n}-1-2=\mathrm{n}+4$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{v}_{\mathrm{n}-1}\right)=4+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-2}\right)+7=11+\mathrm{n}-2-2=\mathrm{n}+7$,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{u}_{2}\right)=7$,
Superior distance $d_{D}\left(u_{2}, u_{2}\right)=6$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{u}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right)+3=3+\mathrm{n}-1+3=\mathrm{n}+5$,
Superior distance $d_{D}\left(u_{i}, u_{n}\right)=3+d\left(v_{i}, v_{n-1}\right)+3=6+n-i-1=5+n-i$,
Superior distance $d_{D}\left(u_{i}, u_{j}\right)=3+d\left(v_{i}, v_{j-1}\right)+7$
Hence v_{2} and v_{n-1} are the superior eccentric vertices of other vertices, u_{1} is superior adjacent to
v_{1}, u_{1} and u_{2} are superior adjacent to each other, v_{2} is superior adjacent to $u_{2}{ }^{\prime} . v_{n-1}$ is superior adjacent to $u_{n-1} S=\left\{v_{1}, v_{2}, u_{1}, u_{2}, u_{2}{ }^{\prime}, \ldots, v_{n-1}, u_{n-1}\right\}$ are the superior eccentric dominating set of the quadrilateral snake graph. S is also minimum with this property.

Double Quadrilateral Snake Graph:

A Double Quadrilateral Snake Graph DQn consisits of two triangular snakes that have a common path. The minimum cardinality of a superior eccentric domination in Double Quadrilateral Snake Graph is $\gamma_{s e d}\left(D Q_{n}\right)$.

Superior distance $d_{D}\left(v_{1}, v_{2}\right)=13$,
Superior distance $d_{D}\left(v_{1}, u_{1}\right)=5$,
Superior distance $d_{D}\left(\mathrm{v}_{1}, \mathrm{u}_{2}\right)=6$,
Superior distance $d_{D}\left(\mathrm{v}_{1}, w_{1}\right)=5$,
Superior distance $d_{D}\left(\mathrm{v}_{1}, w_{2}\right)=6$,
Superior distance $d_{D}\left(v_{1}, v_{n}\right)=6+n-3+6=12+n-3=n+9$,
Superior distance $d_{D}\left(v_{i}, v_{n}\right)=6+n-i-1+6=12+n-i-1=11+n-1($ for $i>2)$,
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=6+d\left(v_{i}, v_{j-1}\right)+6=12+(j-i-1)+6=11+j-1$,
Superior distance $d_{D}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}\right)=12$,
Superior distance $d_{D}\left(u_{1}, u_{2}\right)=3$,
Superior distance $d_{D}\left(u_{1}, u_{2}{ }^{\prime}\right)=7$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{u}_{3}\right)=8$,
Superior distance $d_{D}\left(u_{1}, u_{n}\right)=3+d\left(v_{1}, v_{n}\right)+3=6+n-1=n+5$,
Superior distance $d_{D}\left(u_{i}, u_{n}\right)=3+d\left(u_{i}, u_{n-1}\right)+3=6+(n-i-1)=n-i+5($ for $i>2)$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)=3+\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}-1}\right)+5=8+(\mathrm{j}-1-\mathrm{i})=7+\mathrm{j}-\mathrm{i}($ for $\mathrm{i}>2, \mathrm{j}<\mathrm{n}-1)$, Superior distance $d_{D}\left(w_{1}, w_{2}\right)=3$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{w}_{1}, \mathrm{w}_{2}{ }^{\prime}\right)=7$,
Superior distance $d_{D}\left(w_{1}, w_{3}\right)=8$,
Superior distance $d_{D}\left(w_{1}, w_{n}\right)=3+d\left(v_{1}, v_{n}\right)+3=6+n-1=n+5$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{n}-1}\right)+3=6+(\mathrm{n}-\mathrm{i}-1)=5+\mathrm{n}-\mathrm{i}($ for $\mathrm{i} \geq 2)$.
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}\right)=3+\mathrm{d}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}-1}\right)+5=8+(\mathrm{j}-\mathrm{i}-1)=7+\mathrm{j}-\mathrm{i}$.
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}}\right)=6+\mathrm{n}-2+6=\mathrm{n}+10$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{u}_{2}\right)=11$,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{u}_{2}{ }^{\prime}\right)=6$,
Superior distance $d_{D}\left(w_{2}, w_{2}{ }^{\prime}\right)=6$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{v}_{\mathrm{n}}\right)=6+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+5=11+\mathrm{n}-1-2=11+\mathrm{n}-3=\mathrm{n}+8$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{v}_{\mathrm{n}-1}\right)=6+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}}-2\right)+11=17+\mathrm{n}-2-2=17+\mathrm{n}-4=\mathrm{n}+13$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right)=6+\mathrm{n}-2+6=\mathrm{n}+10$,
Superior distance $d_{D}\left(w_{1}, v_{n}\right)=n+8$,
Superior distance $d_{D}\left(w_{1}, v_{n-1}\right)=n+13$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{u}_{\mathrm{n}}\right)=6+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}}\right)+3=9+\mathrm{n}-2=\mathrm{n}+7$,
Superior distance $d_{D}\left(v_{2}, u_{n-1}\right)=6+d\left(v_{2}, v_{n-1}\right)+3$.
$S=\left\{u_{1}, u_{2}, \ldots, u_{n-1}, u_{n}\right\} \cup\left\{w_{2}, w_{3}, w_{4}, \ldots, w_{n}\right\}$ is a superior dominating set. $S=\left\{u_{1}, u_{2}, \ldots\right.$, $\left.\mathrm{u}_{\mathrm{n}-1}, \mathrm{u}_{\mathrm{n}}\right\} \cup\left\{\mathrm{w}_{2}, \mathrm{w}_{3}, \mathrm{w}_{4}, \ldots, \mathrm{w}_{\mathrm{n}}\right\} \cup\left\{\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right\}$ is a superior eccentric dominating set. $|\mathrm{S}|=\mathrm{n}+($ $\mathrm{n}-1) \mathrm{u} 2=2 \mathrm{n}+1$.

Double Alternate Quarilateral Snake Graph:

A Double alternate Quadrilateral Snake Graph that have a common path. That is, obtained from a path $v_{1}, v_{2}, \ldots \ldots, v_{n}$ by joining v_{i} and v_{i+1} to new vertices v_{i}, x_{i} and w_{i}, y_{i} respectively and adding the edges $v_{i} W_{i}$ and $x_{i} y_{i}$. The minimum cardinality of a superior eccentric domination in double alternate quadrilateral snake graph is $\quad \gamma_{\text {sed }}\left(D A Q_{n}\right)$.
(i) n is even

Superior distance $d_{D}\left(v_{1}, v_{2}\right)=9$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=3$,
Superior distance $d_{D}\left(u_{1}, v_{1}\right)=3$,
Superior distance $d_{D}\left(w_{1}, v_{1}\right)=3$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right)=7+\mathrm{n}-3+7=\mathrm{n}+3+14=\mathrm{n}+11$,
Superior distance $d_{D}\left(v_{i}, v_{n}\right)=2+(n-i-1)+6=2+n-i+6-1=7+n-i($ for $i \geq 2)$,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}}\right)=\mathrm{n}+10$,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{u}_{2}\right)=7$,
Superior distance $d_{D}\left(\mathrm{u}_{1}, \mathrm{v}_{\mathrm{n}}\right)=4+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+6=10+\mathrm{n}-1-2=\mathrm{n}+7$,
Superior distance $d_{D}\left(u_{1}, v_{n-1}\right)=4+d\left(v_{2}, v_{n-2}\right)+6=10+n-2-2=n+6$,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{w}_{2}\right)=7$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{w}_{1}, \mathrm{v}_{\mathrm{n}}\right)=\mathrm{n}+7$,
Superior distance $d_{D}\left(\mathrm{w}_{1}, \mathrm{v}_{\mathrm{n}-1}\right)=\mathrm{n}+6$,
Superior distance $d_{D}\left(u_{2}, v_{n-1}\right)=3+d\left(v_{2}, v_{n-2}\right)+6=9+n-4=n+5$,
Superior distance $d_{D}\left(w_{2}, v_{n-1}\right)=n+5$,
Superior distance $d_{D}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}}\right)=2+\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}-1}\right)+8=10+(\mathrm{j}-\mathrm{i}-1)=9+\mathrm{j}-\mathrm{i}($ for $\mathrm{i} \geq 2, \mathrm{j} \leq \mathrm{n}-1)$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{1}, \mathrm{u}_{2}\right)=3$,
Superior distance $d_{D}\left(u_{1}, u_{3}\right)=8$,
Superior distance $d_{D}\left(u_{1}, u_{n}\right)=3+d\left(v_{1}, v_{n}\right)+3=6+n-1=n+5$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{n}-1}\right)+3=6+\mathrm{n}-\mathrm{i}-1=5+\mathrm{n}-\mathrm{i}($ for $\mathrm{i} \geq 2)$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)=3+\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)+3=6+\mathrm{j}-\mathrm{i}-1=5+\mathrm{j}-\mathrm{i}($ for $\mathrm{i} \geq 2, \mathrm{j} \leq \mathrm{n}-1)$,
Superior distance $d_{D}\left(w_{1}, w_{2}\right)=3$,
Superior distance $d_{D}\left(w_{1}, w_{3}\right)=8$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{w}_{1}, \mathrm{w}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right)+3=\mathrm{n}+5$,
Superior distance $d_{D}\left(w_{i}, w_{n}\right)=3+d\left(w_{i}, w_{n-1}\right)+3=6+(n-i-1)=5+n-i($ for $i \geq 2)$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}}\right)=3+\mathrm{d}\left(\mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{j}-1}\right)+3=6+(\mathrm{j}-\mathrm{i}-1)=5+\mathrm{j}-\mathrm{i}$.
Hence v_{2} and v_{n-1} are superior eccentric vertices of the other vertices. $S=\left\{u_{1}, u_{3}, u_{5}, \ldots, u_{n-1}\right\}$ $\cup\left\{w_{2}, w_{4}, \ldots, w_{n}\right\}$ is a superior dominating set $. S_{1}=S \cup\left\{v_{2}, v_{n-1}\right\}$ is a superior eccentric dominating set of the double alternate quadrilateral snake graph. . $|\mathrm{S}|=\frac{n}{2}+\frac{n}{2}=\mathrm{n}$.
(ii) n is even

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=7$,
Superior distance $d_{D}\left(v_{1}, v_{3}\right)=8$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right)=2+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+6=8+\mathrm{n}-1-2=\mathrm{n}+5$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{u}_{3}\right)=3$,
Superior distance $d_{D}\left(w_{1}, v_{1}\right)=4$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{n}}\right)=8+\mathrm{n}-1-\mathrm{i}+2=10-1+\mathrm{n}-\mathrm{i}=9+\mathrm{n}-\mathrm{i}$,
Superior distance $d_{D}\left(v_{2}, u_{2}\right)=5$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{v}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+2=5+\mathrm{n}-1+2=\mathrm{n}+6$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)=1+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+6=7+\mathrm{n}-1-2=\mathrm{n}+4$,
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=8+d\left(v_{i}, v_{j-1}\right)+8=16+j-1-i=15+j-i($ for $i \geq 2, j \leq n-1)$
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{u}_{\mathrm{n}-1}\right)=1+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+1=2+\mathrm{n}-3=\mathrm{n}-1$,
Superior distance $d_{D}\left(v_{2}, v_{n}\right)=6+d\left(v_{2}, v_{n-1}\right)+1=7+n-1-2=7+n-3=n+4$,
Superior distance $d_{D}\left(v_{2}, v_{n-1}\right)=6+d\left(v_{2}, v_{n-1}\right)+6=12+n-1-2=12+n-3=n+9$.
Hence v_{2} and v_{n-1} are superior eccentric vertices of the other vertices. $S=\left\{u_{2}, u_{3}, \ldots, u_{n-2}, u_{n-}\right.$ $\left.{ }_{1}\right\} \cup\left\{w_{2}, w_{3}, \ldots, w_{n-2}, w_{n-1}\right\}$ are the superior dominating set $S_{1}=S \cup\left\{v_{2}, v_{n-1}\right\}$ are the superior eccentric dominating set the double alternate quadrilateral snake graph.

(iii) \mathbf{n} is odd

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=7$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{3}\right)=8$,
Superior distance $d_{D}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right)=2+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+6=8+\mathrm{n}-1-2=\mathrm{n}+5$,
Superior distance $d_{D}\left(v_{i}, v_{n}\right)=8+d\left(v_{i}, v_{n-1}\right)+5=13+n-1-i=11+n-i($ for $i \geq 2)$,
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=2+d\left(v_{i}, v_{j-1}\right)+2=4+(j-i-1)=3+j-i$,
Superior distance $d_{D}\left(u_{2}, u_{3}\right)=3$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{u}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}}\right)+5=8+\mathrm{n}-2=\mathrm{n}+6$,
Superior distance $d_{D}\left(u_{i}, u_{n}\right)=4+d\left(u_{i}, u_{n-1}\right)+3=7+n-i-1=6+n-i($ for $i \geq 2)$,
Superior distance $d_{D}\left(v_{2}, v_{n}\right)=6+n-2+6=10+n$,
Superior distance $d_{D}\left(v_{2}, u_{2}\right)=5$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{v}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+3=6+\mathrm{n}-1-2=\mathrm{n}+3$,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)=7+\mathrm{d}\left(\mathrm{v}_{3}, \mathrm{v}_{\mathrm{n}-2}\right)+7=14+\mathrm{n}-2-3=\mathrm{n}+9$,
Superior distance $d_{D}\left(\mathrm{u}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)=3+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-2}\right)+2=5+\mathrm{n}-2-2=\mathrm{n}+1$.
Hence v_{2} and v_{n-1} are superior eccentric vertices of the other vertices. $S=\left\{v_{2}, v_{4}, \ldots, v_{n-3}, v_{n-}\right.$ $\left.{ }_{1}\right\} \cup\left\{u_{3}, u_{5}, \ldots, u_{n}\right\} \cup\left\{w_{3}, w_{5}, \ldots, w_{n}\right\}$ are the superior dominating set $S_{1}=S \cup\left\{v_{2}, v_{n-1}\right\}$ are the superior eccentric dominating set the double alternate quadrilateral snake graph.

Alternate quadrilateral snake graphs:

An alternate quadrilateral snake graph $A\left(Q_{n}\right)$ is obtained from a path $u_{1}, u_{2}, \ldots, u_{n}$ by joining u_{i} u_{i+1} (alternatively) to new vertices $v_{i} w_{i}$ respectively and then joining v_{i} and w_{i}. That is every alternate edge of a path is replaced by a cycle C_{4}. The minimum cardinality of a superior eccentric domination in quadrilateral snake graph is $\gamma_{\text {sed }}\left(\mathrm{AQ}_{\mathrm{n}}\right)$.
(i) n is odd

Superior distance $d_{D}\left(v_{1}, v_{2}\right)=5$,
Superior distance $d_{D}\left(v_{1}, v_{3}\right)=6$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right)=2+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}+1}\right)+4=6+\mathrm{n}-3=\mathrm{n}+3$,
Superior distance $d_{D}\left(v_{i}, v_{n}\right)=4+d\left(v_{i}, v_{n-1}\right)+3=7+n-i-1=6+n-i($ for $i \geq 2)$,
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=2+d\left(v_{i}, v_{j-1}\right)+2=4+(j-i-1)+2=4+(j-i-1)=4+j-i-1$ $=3+\mathrm{j}-\mathrm{i}($ for $\mathrm{i} \geq 2, \mathrm{j} \leq \mathrm{n}-1)$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{u}_{3}\right)=3$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{u}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{v}_{1}, \mathrm{v}_{\mathrm{n}}\right)+3=3+\mathrm{n}-1+3=\mathrm{n}+5$,
Superior distance $d_{D}\left(u_{i}, u_{n}\right)=4+d\left(u_{i}, u_{n-1}\right)+3=7+n-i-1=6+n-i($ for $i \geq 2)$,
Superior distance $d_{D}\left(v_{2}, v_{n}\right)=4+n-2+3=n+5$,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{u}_{2}\right)=5$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{v}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+3=6+\mathrm{n}-1-2=\mathrm{n}+3$,
Superior distance $d_{D}\left(v_{2}, v_{n-1}\right)=5+d\left(v_{3}, v_{n-2}\right)+5=n+5$,
Superior distance $d_{D}\left(\mathrm{u}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)=3+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-2}\right)+2=5+(\mathrm{n}-2-2)=\mathrm{n}-4+5=\mathrm{n}+1$.
Hence v_{2} and v_{n-1} are the superior eccentric vertices of other vertices.
$S^{*}=\left\{v_{4}, v_{6}, v_{8}, \ldots, v_{n-3}\right\} \cup\left\{u_{3}, u_{5}, u_{7}, \ldots, u_{n-2}, u_{n}\right\}$ is a superior dominating set.
$S=\left\{v_{1}, v_{2}, v_{n-1}\right\} \cup\left\{v_{4}, v_{6}, v_{8}, \ldots, v_{n-3}\right\} \cup\left\{u_{3}, u_{5}, u_{7}, \ldots, u_{n-2}, u_{n}\right\}$ is a superior eccentric dominating set of the double alternate quadrilateral snake graph.
Therefore $|S|=n-3-4+n-3+3=2 n-7$.

(ii)n is even

Superior distance $d_{D}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=5$,
Superior distance $d_{D}\left(\mathrm{v}_{1}, \mathrm{v}_{3}\right)=8$,
Superior distance $d_{D}\left(v_{1}, v_{n}\right)=4+d\left(v_{2}, v_{n-1}\right)+3=6+n-1-2=6+n-3=n+3$,
Superior distance $d_{D}\left(v_{i}, v_{n}\right)=2+d\left(v_{i}, v_{n-1}\right)+3=5+n-1-i=4+n-i($ for $i \geq 2)$,
Superior distance $\left.d_{D}\left(v_{i}, v_{j}\right)=2+d_{\left(v_{i},\right.}, v_{j-1}\right)+2=4+(j-i-1)=3+j-i($ for $\mathrm{i} \geq 2, j \leq n-1)$,
Superior distance $d_{D}\left(v_{2}, v_{n}\right)=4+n-2+4=n+6$,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{u}_{2}\right)=5$,

Superior distance $d_{D}\left(u_{1}, u_{2}\right)=3$,
Superior distance $d_{D}\left(u_{1}, u_{n}\right)=3+d\left(v_{1}, v_{n}\right)+3=6+n-1=5+n$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{v}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+3=3+\mathrm{n}-1-2-3+3=\mathrm{n}+3$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)=4+\mathrm{d}\left(\mathrm{v}_{3}, \mathrm{v}_{\mathrm{n}-2}\right)+5=9+\mathrm{n}-2-2=\mathrm{n}+5$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)=3+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-2}\right)+5=8+\mathrm{n}-4=\mathrm{n}+4$,
Superior distance $d_{D}\left(u_{1}, v_{n}\right)=4+d\left(v_{2}, v_{n-1}\right)+3=7+n-3=n+4$,
Superior distance $d_{D}\left(u_{1}, v_{n-1}\right)=4+d\left(v_{2}, v_{n-2}\right)+5=9+n-2-2=n+5$,
Superior distance $d_{D}\left(u_{i}, u_{n}\right)=3+d\left(u_{i}, u_{n-1}\right)+3=6+n-i-1=5+n-i($ for $i \geq 2)$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}}\right)=3+\mathrm{d}\left(\mathrm{u}_{\mathrm{i}}, \mathrm{u}_{\mathrm{j}-1}\right)+3=6+\mathrm{j}-1-\mathrm{i}=5+\mathrm{j}-\mathrm{i}($ for $\mathrm{i} \leq 2, \mathrm{j} \geq \mathrm{n}-1)$
Hence v_{2} and v_{n-1} are the superior eccentric vertices of other vertices.
$S=\left\{u_{1}, u_{3}, u_{5}, \ldots, u_{n-1}\right\} \cup\left\{v_{4}, v_{6}, \ldots, v_{n-2}\right\} \cup\left\{v_{2}, v_{n-1}\right\}$
are the superior eccentric dominating set of the alternate quadrilateral snake graph.
Therefore $|\mathrm{S}|=\mathrm{n}+2$.
(iii) \mathbf{n} is even

Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right)=5$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{1}, \mathrm{v}_{3}\right)=6$,
Superior distance $d_{D}\left(v_{1}, v_{n}\right)=2+n-1+2=n+3, N_{D}\left(v_{i}, v_{n}\right)=6+d\left(v_{i}, v_{n-1}\right)+2=8+n-1-$ $i=7+n-i($ for $i \geq 2)$,
Superior distance $d_{D}\left(v_{i}, v_{j}\right)=6+d\left(v_{i}, v_{j-1}\right)+6=12+j-i-1=11+j-i($ for $i \geq 2, j \leq n-1)$,
Superior distance $d_{D}\left(u_{2}, u_{3}\right)=3$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{u}_{\mathrm{n}-1}\right)=1+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)+1=2+\mathrm{n}-3=\mathrm{n}-1$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}}\right)=4+\mathrm{n}-3=\mathrm{n}+1$,
Superior distance $d_{D}\left(\mathrm{v}_{2}, \mathrm{u}_{2}\right)=5$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{v}_{\mathrm{n}}\right)=3+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}}-1\right)+3=6+\mathrm{n}-1-2=6+\mathrm{n}-3=\mathrm{n}+3$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)=5+\mathrm{d}\left(\mathrm{v}_{3}, \mathrm{v}_{\mathrm{n}}-2\right)+5=10+\mathrm{n}-2-3=\mathrm{n}+5$,
Superior distance $\mathrm{d}_{\mathrm{D}}\left(\mathrm{u}_{2}, \mathrm{v}_{\mathrm{n}-1}\right)=3+\mathrm{d}\left(\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-2}+5=8+\mathrm{n}-2-2=\mathrm{n}+4\right.$,
Hence v_{2} and v_{n-1} are the superior eccentric vertices of the other vertices.
$\mathrm{S}=\left\{\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{5}, \ldots, \mathrm{u}_{\mathrm{n}-1}\right\} \cup\left\{\mathrm{v}_{4}, \mathrm{v}_{6}, \ldots, \mathrm{v}_{\mathrm{n}-2}\right\} \cup\left\{\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}-1}\right\}$ are the superior eccentric dominating set of the alternate quadrilateral snake graph.
terefore $|\mathrm{S}|=\mathrm{n}+2$.

References:

1) F. Buckley and F. Harary, distance in graphs, Addison - Wesley, Reading 1990.
2) E.J Cockayne, S.T Hedetniemi, 1977, Towards a theory of domination in graphs networks, pp 247-261.
3) V. R.Kulli, Theory of Domination in Graphs, Vishwa international publication, Gulbarga, India 2010.
4) T.W. Haynes, S.T.Hedetniemi and P.J slater, Fundamentals of domination in graphs, Marcel Dekkar,Newyork.
5) T. N. Janakiraman, M. Bhanumathi and S. Muthammai, Eccentric Domination in Graphs, International Journal of Engineering Science, Advanced computing and Bio-technology vol. 1, No. 2, April- June 2010, pp. 55-70.
6) KM. Kathiresan and G. Marimuthu, Superior Domination in Graphs, Jul 2008 Utilitas Mathematica.
7) KM. Kathiresan and G. Marimuthu, Superior Distance in Graphs, Journal of combinatorial mathematics and combinatorial computing, May 2007.
8) M. Bhanumathi and R. Meenal Abirami, Superior Eccentric Domination in Graphs, International Journal of Pure and Applied Mathematics, Dec 2017.

